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Pair Interaction of Dislocations in Two-Dimensional Crystals
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The pair interaction between crystal dislocations is systematically explored by analyzing particle
trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair
energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of
the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature
dependence of the interaction potential, but not regarding the angle dependence where discrete lattice
effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a
quantitative understanding of the formation and interaction energies of dislocations in two-dimensional
crystals.

DOI: 10.1103/PhysRevLett.95.185502 PACS numbers: 61.72.Ff, 61.72.Lk, 64.70.Dv
The elastic theory of dislocations is at the heart of
modern crystal physics and plays a pivotal role in deter-
mining fundamental crystal properties, such as, for in-
stance, their growth and mechanical properties, formation
of grain boundaries or internal stresses, or the fatigue
behavior of crystals. The central idea of this theory was
introduced by Taylor [1], one of their pioneers, and refers
to the notion that dislocations can interact with one another
as particles in a dilute gas. Taylor assumed that the force
between two dislocations can be calculated from the stress
field produced from one dislocation acting on an element
of the dislocation line of the other, an assumption that was
later justified more rigorously by Eshelby [2]. This then
made it possible to set up a dislocation interaction Hamil-
tonian which, in its most general form, consists of terms for
the screw and edge components of the dislocation [3].

This Letter reports on an experimental study testing
quantitatively the predictions of Taylor’s dislocation inter-
action Hamiltonian, thus extending previous work [4] in
which a full quantitative analysis was not possible. Our
idea is to investigate topological defects of crystals made
of colloidal particles, having a diameter as large as a few
�m. Particles of such a size can be directly observed under
the microscope and conveniently tracked over many hours
by appropriate video microscopy techniques. With the
trajectories of all the crystal particles at hand, one can
readily compute the probabilities of the formation of cer-
tain defect pairs, which subsequently allows one to esti-
mate the defect interaction energies.

We examine 2D crystals where dislocations are no lon-
ger defect lines as in three dimensions, but rather point
defects characterized by Burgers vectors ~b�~r� which are
dimensionless Bravais lattice vectors of the 2D crystal
lattice. Since in 2D screw dislocations cannot exist, the
Hamiltonian, which we experimentally test here, reduces
to the interaction energy for an isolated pair of edge dis-
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locations at ~r and ~r0,
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with ~R � ~r� ~r0 and � � 1=kBT. The coupling constant K
is related to the Lamé elastic constants � and �, K �
4��a2

0��� ��=�2�� ��; Ec is the core energy, i.e., the
energy needed for the creation of an isolated dislocation,
while a is the dislocation core diameter to be distinguished
from a0, the lattice constant of the underlying lattice (a
triangular lattice in our case).

Our experiment has already been described in a number
of publications [5–7], the technical data of the specific
setup used here are the same as in [7]. Therefore, we
restrict ourselves to just summarizing the essentials here.
Spherical colloids of a diameter of d � 4:5 �m are con-
fined by gravity to the air-water interface of a hanging
water droplet. With a bending of the interface smaller than
half a micron over the field of view (835	 620 �m), our
colloid system can be considered as the realization of an
almost perfect 2D system. Coordinates of about 2500
particles (out of 2:5	 105 particles of the whole sample)
at equal time steps (every 500 ms) were recorded with an
accuracy better than 0:1 �m using digital video micros-
copy. Averages, when given in the following, were typi-
cally taken over 2500 configurations (in Fig. 3 only each
tenth configuration was analyzed). To check the statistics,
we also computed averages on the basis of only the first
half of all configurations. The colloidal particles are super-
paramagnetic due to Fe2O3 doping. A magnetic field ~B
applied perpendicular to the air-water interface induces in
each particle a magnetic moment ~M � � ~B, which leads to
a repulsive dipole-dipole pair interaction potential
�v�r� � �=�

�������
��
p

r�3 with the dimensionless interaction
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strength parameter � � ���0=4����B�2����3=2, with
� � 2=�

���
3
p
a2

0� being the 2D area density. Thus, the colloi-
dal interaction is not only precisely known, but can also be
externally tuned by varying the magnetic field B. � is
determined as described in Ref. [6]; it may be thought of
as being an inverse system temperature and is the only
parameter controlling the phase behavior of the system.
For �> �m the sample is a hexagonal crystal; the inverse
melting temperature �m � 60 was determined in [6] by
means of the relative Lindemann parameter and the decay
behavior of the translational order parameter. The Lamé
elastic constants for this crystal—in its ideal form as a
hexagonal, defect free lattice at T � 0—are also known,
and with these constants the coupling constant becomes
K � 1:258� [7]. Finally, the core energy Ec can be esti-
mated with the help of the renormalization-flow diagram of
the theory of 2D melting [8]. We find �Ec � 1:788K=8�
[9]. We have also carried out accompanying Monte Carlo
(MC) simulations using the �=r3 pair potential for 3600
crystal particles (periodic boundary conditions, cutoff of
5a0, 50 000 MC cycles).

The quantity we actually measure is the number of
dislocations per frame. A dislocation can be identified by
finding a fivefold coordinated colloid being the nearest
neighbor to a sevenfold coordinated particle, where the
number of nearest neighbors of each colloid is determined
by means of a Voronoi construction. The Burgers vector
characterizing this dislocation is a lattice vector of unit
length perpendicular to the line joining both particles [10].
We take the midpoint of this line to define the center of the
dislocation. The centers of two such dislocations are con-
nected by the distance vector ~R; see inset of Fig. 1(b).
Figure 1 shows particle coordination plots of typical con-
figurations from experimental data in both the crys-
talline (a) and the liquid phase (b). For �
 �m the over-
whelming majority of dislocations occur in form of bound
FIG. 1 (color online). Experimental particle configurations in the c
neighbors are highlighted by triangles and squares, respectively, whil
the dynamics of a typical dislocation pair: Within several seconds t
vanishes. The solid lines indicate the lattice lines, two of them endi
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dislocation pairs with antiparallel Burgers vectors, which
from time to time appear, dissociate, recombine again, and
finally vanish, as exemplified in Fig. 1(c). It is clear from
this figure how local distortions of particles on a regular
hexagonal lattice can lead to the formation of a dislocation
pair at minimum distance: four nearest neighbor particles
of a hexagonal lattice have five nearest neighbor bonds of
length a0 and one next-nearest neighbor bond of length���

3
p
a0. These four particles can be continuously shifted

such that a rectangle is formed with side lengths a0 and���
3
p
a0=2 and a diagonal

���
7
p
a0=2. Two particles are then

fivefold coordinated, and the other two sevenfold coordi-
nated, and a dislocation pair has formed. The distance R77

between the two sevenfold coordinated particles now is���
7
p
a0=2. The right inset of Fig. 2 shows the vector ~R77 of all

these minimum-distance dislocation pairs: indeed, R77

equals
���
7
p
a0=2. The plot also reveals that these pairs

have no particular preference for any of the three main
directions of the hexagonal lattice. In the following, we
therefore need not specify the direction of the individual
Burgers vectors, but only the angle � between ~R and ~b. A
(�; R) plot of the minimum-distance dislocation pairs is
given in the left inset of Fig. 2 with the corresponding �
histogram in the main figure. Since � < 0 implies disap-
pearance of dislocations because R77 becomes too large for
the two sevenfold coordinated particles to remain nearest
neighbors [see Fig. 1(b)], the histogram shows a sharp edge
for � < 0, and the whole distribution becomes asymmetric
as there is no such sharp limitation for pairs with positive �.
This angle distribution offers the first possibility to test
Eq. (1). If R equals the minimum distance a and ~b � � ~b0,
then Eq. (1) reduces to �HD � �K=�4��cos2�, and
exp���HD� becomes exp�1:258�=�4��cos2��, plotted as
a solid line in Fig. 2. The experimental distribution is
observed to be much narrower than the theoretical one, a
rystalline (a) and liquid phase (b) in which particles with 5 and 7
e sixfold coordinated particles are plotted as dots. Panel (c) shows
he pair dissociates into two dislocations, recombines again, and
ng at the fivefold coordinated particles.

2-2



1 10
R / a

0

0.1

0.15

0.2

H
D

 / 
Γ 

kT

sim
exp

0 1 2 3 4
R / a

0

E
(R

) 
[a

.u
.]

Γ = 67

FIG. 3. Distance dependence of the pair interaction energy
� logP�R� � �HD�R� of dislocation pairs with antiparallel
Burgers vectors. Circles, experiment (� � 65; 67; 69); solid tri-
angles, simulation (� � 61; 64; 70; 75); solid line, prediction
according to Eq. (1). Note the logarithmic scale of the R axis
in the main figure. As shown in the inset, the R distribution
exhibits peaks, which is a signature of the underlying crystal
lattice.

-1 0 1
 θ  [rad]

pr
ob

ab
ili

ty
 P

(θ
) [

a.
u.

]

exp
sim

-1 0 1
x / a

0

-1

0

1

y 
/ a

0 7
1/

2 /2

0.8 1.2
R / a

0

0

0.5

θ 
 [

ra
d]

FIG. 2. Distribution of angles between the Burgers vector ~b
and the distance vector ~R of dislocation pairs in their ground
state (R � a, ~b � � ~b0). Symbols, experiment and simulation as
indicated; solid line, prediction according to Eq. (1). Insets as
explained in the text. � � 69.
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disagreement that arises from a failure of continuum theory
which Eq. (1) is based on and which by its nature is
expected to work on larger length scales only. Moreover,
Eq. (1) ignores the hard-core interaction between the par-
ticles and steric effects are thus not taken into account. To
explain the experimental angle distribution one would have
to compute the energy landscape of the distorted discrete
lattice around dislocation pairs fixed at �R; �� by allowing
the elastic stress in the neighborhood of the pair to relax.
More direct is the MC simulation which reproduce the
experimental curve almost perfectly as our figure shows.

We next explore the R dependence of Eq. (1). For each
dislocation with Burgers vector ~b, we search for all part-
ners with an antiparallel Burgers vector leading to an R
distribution as in the inset of Fig. 3. In order to compare
our results with the theory we compute dislocation pair
probabilities P�R� by dividing the number of pairs
E�R��R within the distance range R� �R=2 and R�
�R=2 by the number of possible pairs, 3NN1�R��R on a
lattice with N sites [N1�R��R � 2; 12; 18; 24 for shell R1

to R4 with shell thickness �R � 0:9a0] [11]. Figure 3
shows � log�P�R��=� resulting from analyzing both the
MC and the experimental configurations. Assuming
cos� � 1, which according to the finding of Fig. 2 should
be a good approximation (at least for the minimum-
distance pairs), Eq. (1) for a dislocation pair with ~b �
� ~b0 simplifies to

� logP�R� � �HD �
K
4�

�
log
R
a
� 0:788

�
; (2)

with K � 1:258� and the distance
���
3
p
a0=2 � 0:87a0 be-

tween two lattice lines taken as an estimate of the disloca-
tion core diameter a. Figure 3 compares � logP�R�=� of
Eq. (2) with the experimental and simulational data. Good
agreement is found considering that no parameter has been
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fitted. The remaining deviations can be understood as
follows. Defect pairs such as those in circle 1 in Fig. 1(a)
can be interpreted unambiguously in terms of Eq. (1);
larger defect clusters, however, cannot (circles 2 and 3 in
Fig. 1). While in case of the defect cluster in circle 2, it is
still possible to identify three dislocation pairs, each with
antiparallel Burgers vectors, it is probably not correct to
neglect higher order interactions by naively assuming that
the interaction energy of this cluster is given by sums of
pair potentials as in (1). Clusters such as in circle 3 present
another special case: here one can identify three disloca-
tions whose Burgers vectors add up to ~0. Such so-called
higher complexions cannot be analyzed in terms of Eq. (1)
and are omitted. However, higher order complexions, such
as four-dislocation clusters, are not that simple to identify
and are often erroneously counted. An additional source of
error is the zero temperature approximation of the Young’s
modulus which at finite temperature is expected to slightly
differ from its T � 0 value. Finally, there are experimental
artifacts such as the two dislocations in circle 4 which turn
out to be absolutely immobile and are probably simply
caused by dust particles or defective colloid particles. All
these factors lead necessarily to a defect probability that
for larger R is higher, and thus to interaction energies that
are lower, than predicted by Eq. (2). The differences be-
tween the simulation and the experimental data can also be
taken as an estimate of the importance of finite size effects,
as there are a 100 times more particle used in the experi-
ment than in the simulation.

Figure 4 investigates the temperature dependence of the
dislocation pair interaction energy in Eq. (1): � logP�R1�
of the minimum-distance pairs is plotted versus �. As is to
2-3
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FIG. 4. Temperature dependence of the pair interaction energy
� logP � �HD of minimum-distance dislocation pairs (R �
0:95a0, ~b � � ~b0). Symbols as in previous figures; solid line,
prediction according to Eq. (1). Melting transition at �m � 60.
Inset: � logP of isolated dislocations, P � P57 (circles), pairs of
isolated disclinations, P � P5=7(diamonds), the sum of both P �
P57 � P5=7 (crosses), and the theoretical curve derived from
Eq. (1).
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be seen in Fig. 3, R1 � 0:95a0, and Eq. (2) becomes
1:258�=4��log�R1=0:87a0� � 0:788�, plotted as a solid
line in Fig. 4. We find again good agreement for both the
experimental and the simulational data, in case of the
experiment even below �m � 60 where the system is no
longer crystalline and where Eq. (1) ceases to make sense.

The Hamiltonian in Eq. (1) reaps additional significance
from the important role it plays in the Kosterlitz-Thouless-
Halperin-Nelson-Young theory of two-dimensional melt-
ing [8] where it defines the starting point for the derivation
of the renormalization procedure for the elastic constants
[12]. According to this theory, the translational symmetry
of the crystal is destroyed by the dissociation of dislocation
pairs, while dissociation of dislocations into isolated dis-
clinations (fivefold and sevenfold coordinated particles
having exclusively sixfold coordinated neighbors) destroys
the orientational order. The statistics of both, isolated
dislocations and disclinations, is studied in the inset of
Fig. 4. The figure shows the probabilities P5j7��E5�E7�=
�2N� and P57 � E57=�3N� and the sum of both probabil-
ities, where E5; E7 is the number of fivefold and sevenfold
coordinated particles, having exclusively sixfold coordi-
nated neighbors, and E57 is the number of isolated dislo-
cations, understood here simply as the 5=7 pairs that are
surrounded only by sixfold coordinated particles. The solid
curve is

P
2P�R�N1�R�with P�R� from Eq. (2) and the sum

running over R � 2a; 3a; 4a. It is evident that Eq. (2)
provides the correct description for values of � down to
55 for the sum P5j7 � P57, but not for the probability P57 of
isolated dislocations that we actually measure. For this
probability, deviations from the theoretical curve start
18550
becoming observable for �< �m since now a growing
number of dislocations vanish by dissociating into isolated
disclinations. Note also the change of the differences in the
formation energies: While deep in the crystalline phase (at
� � 70), more than 10 kT is required for the formation of
an isolated disclination, but only 7 kT for an isolated
dislocation, both defect types becoming equally probable
at higher temperatures, well below �m (5.5 kT at � � 55).

In conclusion, we systematically explored the mutual
attraction between dislocations in 2D crystals. Our results
show that, except for its angle dependence, the Hamil-
tonian in Eq. (1) provides an adequate and quantitatively
correct description of the pair interaction of dislocations in
two-dimensional colloidal crystals. It has been success-
fully tested for temperatures up to the melting temperature
and dislocation pair distances as small as one lattice
constant.
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